²úÆ·ÖÐÐÄ
ÁªÏµÁú8Ψһ¹ÙÍø
ÏúÊÛרÓãº
µØµã£º±±¾©Êк£µíÇøÎ÷С¿Ú·66ºÅÖйش嶫Éý¿Æ¼¼Ô°C-1Â¥Èý²ã

PEG (Amine)2, HCl Salt
²úÆ·´úºÅ£º
HClNH2-PEG-NH2HCl
²úÆ·´¿¶È£º
¡Ý 95%
°ü×°¹æ¸ñ£º
1g, 10g, 100gµÈ£¨ÌØÊâ°ü×°ÐèÊÕÈ¡·Ö×°Óöȣ©
·Ö×ÓÁ¿£º
2000 Da,3500 Da, 5000 Da, 7500 DaµÈ
Òªº¦´Ê£º
¿ÆÑпͻ§Ð¡ÅúÁ¿Ò»¼ü²É¹ºµØµã£¨Ð¡ÓÚ5¿Ë£©
- ²úÆ·ÃèÊö
- ²Î¿¼ÎÄÏ×
-
¡¡¡¡Áú8Ψһ¹ÙÍø¿Æ¼¼Ìṩ¸ßÆ·ÖÊË«¶Ë°·»ù¾ÛÒÒ¶þ´¼£¬ÑÎËáÑβúÆ·£¬²úÆ·È¡´úÂÊ¡Ý95%¡£
¡¡¡¡Áú8Ψһ¹ÙÍø¿Æ¼¼Éú²úµÄË«°·PEGÊÇÒ»ÖÖͨ¹ýõ£°·¡¢°±»ù¼×Ëáõ¥¡¢ëå»òÖÙ°·µÈÎȶ¨µÄÁ¬½ÓÐÎʽ½øÐÐPEGÐÞÊεÄͬ˫¹¦Ð§PEG¡£ÑÎËáÑÎÐÎʽʹ˫°·PEG¿ÉÒÔÒÔÎȶ¨µÄ¹ÌÌå״̬±£´æ¡£Áú8Ψһ¹ÙÍø¿Æ¼¼µÄͬ˫¹¦Ð§PEGÑÜÉúÎï¿É×÷Ϊ½»Áª¼Á¹ã·ºÓ¦ÓÃÓÚÂѰ×ÖʺÍëĵÄPEGÐÞÊΡ¢ÄÉÃ׿ÅÁ£¼°Íâò¸ÄÐÔÖС£ÓëʹÓÃÏßÐÔPEGÐÞÊεÄ΢Á£Ïà±È£¬Óëͬ˫¹¦Ð§PEG׺ºÏµÄ¿ÅÁ£¿É°ü¹Ü¸ü¸ßµÄÔØÒ©Á¿¡£
²úÆ·±àÂë
²úÆ·´úºÅ
A4015
NH2HCl-PEG2000-NH2HCl
A4016
NH2HCl-PEG3500-NH2HCl
A4017
NH2HCl-PEG5000-NH2HCl
A4018
NH2HCl-PEG7500-NH2HCl
¡¡¡¡Áú8Ψһ¹ÙÍø¿Æ¼¼ÌṩHClNH2-PEG-NH2HCl·Ö×ÓÁ¿2000 Da,3500 Da, 5000 Da, 7500 DaµÄ²úÆ·1¿ËºÍ10¿Ë°ü×°¡£
¡¡¡¡Áú8Ψһ¹ÙÍø¿Æ¼¼Ìṩ·ÖװЧÀÍ£¬ÐèÒªÊÕÈ¡·Ö×°Óöȣ¬Èç¹ûÄúÐèÒª·ÖװΪÆäËû¹æ¸ñÇëÓëÎÒÃÇÁªÏµ¡£
¡¡¡¡Áú8Ψһ¹ÙÍø¿Æ¼¼Í¬Ê±ÌṩÆäËû·Ö×ÓÁ¿µÄHClNH2-PEG-NH2HClÑÜÉúÎï²úÆ·£¬ÈçÄãÐèÒªÇëÓëÎÒ˾sales@jenkem.comÁªÏµ¡£
¡¡¡¡Áú8Ψһ¹ÙÍø¿Æ¼¼Ìṩ´óÅúÁ¿Éú²ú²úÆ·¼°GMP¼¶±ð²úÆ·£¬ÈçÐ豨¼ÛÇëÓëÎÒÃÇÁªÏµ¡£
-
References:
- Zhang, T., et al., Magnetic/pH dual-responsive nanocomposites loading doxorubicin hydrochloride for cancer therapy, Micro & Nano Letters, 2019.
- Goh, S.C., et al., Polydopamine-polyethylene glycol-albumin antifouling coatings on multiple substrates: variations, Journal of Materials Chemistry B, 2018.
- Kushwah, V., at al., Improved antitumor efficacy and reduced toxicity of docetaxel using anacardic acid functionalized stealth liposomes, Colloids and Surfaces B: Biointerfaces, 2018, V. 172, P. 213-223.
- Meng, Y., et al., Aminopeptidase N (CD13) targeted MR and NIRF dual-modal imaging of ovarian tumor xenograft, Materials Science and Engineering: C, 2018, V. 93, P. 968-974.
- Goor, O., et al., Introduction of anti-fouling coatings at the surface of supramolecular elastomeric materials via post-modification of reactive supramolecular additives, Polymer Chemistry, 2017.
- Goh, S.C.M, Universal Aqueous-Based Antifouling Coatings For Multi-Material Devices, McMaster University, 2017.
- Chen, X., et al., PLGA-PEG-PLGA triblock copolymeric micelles as oral drug delivery system: In vitro drug release and in vivo pharmacokinetics assessment, Journal of Colloid and Interface Science, 2017, V. 490, P. 542-552.
- Mou, J., et al., A New Green Titania with Enhanced NIR Absorption for Mitochondria-Targeted Cancer Therapy, Theranostics, 2017, 7(6):1531-1542.
- Kim, H.C., et al., Highly stable and reduction responsive micelles from a novel polymeric surfactant with a repeating disulfide-based gemini structure for efficient drug delivery, Polymer, 2017.
- Bai, J., et al., Triple-Modal Imaging of Magnetically-Targeted Nanocapsules in Solid Tumours In Vivo, Theranostics, 2016, 6(3):342-356.
- Jain, S., et al., Estradiol functionalized multi-walled carbon nanotubes as renovated strategy for efficient gene delivery, RSC Advances, 2016, 6(13):10792-801
- Mehdizadeh, M., et al., Biotin decorated PLGA nanoparticles containing SN-38 designed for cancer therapy. Artificial cells, nanomedicine, and biotechnology, 2016, 1-0.
- Bai, J., et al., Real-time monitoring of magnetic drug targeting using fibered confocal fluorescence microscopy, Journal of Controlled Release, 2016.
- Kippstein, R., et al., Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo, Small, 2015, 11: 4704–4722.
- Jain, S., et al., Enhanced Antitumor Efficacy and Reduced Toxicity of Docetaxel Loaded Estradiol Functionalized Stealth Polymeric Nanoparticles, Mol. Pharmaceutics, 2015, 12 (11), pp 3871–3884.
- Chen, N., et al., Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas, Journal of Colloid and Interface Science, 2015, 457, P. 27-34.
- Liu, S., et al., Meter-long multiblock copolymer microfibers via interfacial bioorthogonal polymerization, Adv. Mater., 2015.
- Zhang, T., et al., Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer, Nanomedicine, 2015, 10:4 , P. 573-587.
- Cheng, L., et al., Construction and evaluation of PAMAM–DOX conjugates with superior tumor recognition and intracellular acid-triggered drug release properties, Colloids and Surfaces B: Biointerfaces, 2015, 136, P. 37-45.
- Li, S., et al., Targeted imaging of brain gliomas using multifunctional Fe3O4/MnO nanoparticles, RSC Adv., 2015, 5, 33639-33645.
- Chen, W., et al., Assembly of Fe3O4 nanoparticles on PEG-functionalized graphene oxide for efficient magnetic imaging and drug delivery, RSC Adv., 2015, 5, 69307-69311.
- Rubio, N., et al., Solvent-Free Click-Mechanochemistry for the Preparation of Cancer Cell Targeting Graphene Oxide, ACS Applied Materials & Interfaces, 2015, 7 (34), 18920-18923.
- Chen, H., et al., A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery, Nanoscale, 2015, 7, 15477-15486.
- El-Gogary, R.I., et al., Polyethylene Glycol Conjugated Polymeric Nanocapsules for Targeted Delivery of Quercetin to Folate-Expressing Cancer Cells in Vitro and in Vivo. ACS Nano, 2014, 8(2): p. 1384-1401.
- Amoozgar, Z., et al., Dual-layer surface coating of PLGA-based nanoparticles provides slow-release drug delivery to achieve metronomic therapy in a paclitaxel-resistant murine ovarian cancer model, Biomacromolecules, 2014, 15(11):4187-94.
- Feng, T., et al., PEGylated poly(aspartate-g-OEI) copolymers for effective and prolonged gene transfection, J. Mater. Chem. B, 2014, 2, 2725-2732.
- Browning, M.B., et al., Endothelial Cell Response to Chemical, Biological, and Physical Cues in Bioactive Hydrogels, Tissue Engineering Part A, 2014, 20(23-24): 3130-3141.
- Zhang, M., Graphene Oxide Based Theranostic Platform for T1-Weighted Magnetic Resonance Imaging and Drug Delivery, ACS Appl. Mater. Interfaces, 2013, 5(24), pp 13325–13332.
- Das, M., et al., Intranuclear Drug Delivery and Effective in Vivo Cancer Therapy via Estradiol–PEG-Appended Multiwalled Carbon Nanotubes, Mol. Pharmaceutics, 2013, 10 (9), pp 3404–3416.
- Zhou, J., et al., In vivo evaluation of medical device-associated inflammation using a macrophage-specific positron emission tomography (PET) imaging probe. Bioorganic & Medicinal Chemistry Letters, 2013, 23(7): p. 2044-2047.
- Browning, M.B., Bioactive Hydrogels with Enhanced Initial and Sustained Cell Interactions, Biomacromolecules, 2013, 14(7) p: 2225–2233.
- Bagaria, H.G., et al., Adsorption of iron oxide nanoclusters stabilized with sulfonated copolymers on silica in concentrated NaCl and CaCl 2 brine, Journal of colloid and interface science, 2013, 398: 217-226.
- Zhang, T., et al., In vivo photoacoustic imaging of breast cancer tumor with HER2-targeted nanodiamonds, SPIE NanoScience+ Engineering, International Society for Optics and Photonics, 2013, pp. 881504-881504.
- Yang, S.-B., et al., The colossal role of H-MnO2-PEG in ischemic stroke, Nanomedicine: Nanotechnology, Biology and Medicine, 2021, 33, 102362.
- Kawanami, T., et al., A novel diclofenac-hydrogel conjugate system for intraarticular sustained release: Development of 2-pyridylamino-substituted 1-phenylethanol (PAPE) and its derivatives as tunable traceless linkers, International Journal of Pharmaceutics, 2020, 585, 119519.
- Yu, H., et al., Polyvinylpyrrolidone functionalization induces deformable structure of graphene oxide nanosheets for lung-targeting delivery, Nano Today, 2021, V. 38.
-
Liao, H. T., et al, A bioactive multi-functional heparin-grafted aligned poly(lactide-co-glycolide)/curcumin nanofiber membrane to accelerate diabetic wound healing, Materials Science and Engineering: C, 2021, V. 120.
²úƷѯ¼Û